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ABSTRACT 

Suppose R is a prime ring with the center Z and the extended centroid C. Let 
p(x!  . . . . .  x . )  be a polynomial over C in noncommuting variables x, . . . . .  x . .  
Let I be a nonzero ideal of R and A be the additive subgroup of R C generated 
by { P(al,  . . . , a . )  : a~ . . . . .  a. E l } .  Then either p(x~ . . . . .  x , )  is central valued 
or A contains a noncentral Lie ideal of R except in the only one case where R is 
the ring of all 2 X 2 matrices over GF(2), the integers mod 2. 

In what follows, R will always be an associative prime ring. Z ( R )  will stand 

for the center of  R and C, for its extended centroid. For x, y ER,  [x, y] = 

x y  - y x .  For subsets S,  T o f  R ,  [S, T] denotes the additive subgroup generated 
by [s, t], s ES ,  t ~ T. By a Lie ideal of  R, we mean an additive subgroup U o f R  

such that [U, R] _ U. As in [3], we call a Lie ideal Uproper  if [M, R] _C U for 
some nonzero ideal M of R. 

Let p(x t  . . . .  , x , )  be a polynomial over C in noncommuting variables 
Xl . . . . .  x , .  Our main objective is the following 

THEOREM. Let  I be a nonzero ideal o f  R and A be the additive subgroup (oJ 

R C )  generated by {p(at ,  . . . , a , )  : al, . . . , a,  E l } .  Then either p(x l ,  . . . , x , )  is 

central valued or A contains a proper L ie  ideal o f  R ,  except in the only one case 

where R is the ring o f  all 2 × 2 matrices over GF(2), the integers mod 2. 

In [9], some special cases of  our main theorem are proved. But there p is 

assumed to be strongly noncentral.  Actually, the most intricate part of  our 
proof is exactly devoted to removing this assumption. Also in [9], R is assumed 

to be a k-algebra, where k is a commutative ring with 1, and it is the k- 

submodule  generated by all specialization o f  p,  the so-called extended range of 

p, that is shown to contain noncentral Lie ideals. In this context, our theorem 
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gives the most general possible formulation. These remarks may justify the 

length of  this paper. 

It is proved in [2] and [5] that in a prime ring R,  any noncentral Lie ideal U 

of R is proper except only when Ch R = 2 and R is 4-dimensional over its 

center. Conversely, for any nonzero ideal I of  R,  [I, I], the additive subgroup 

generated by [x, y], x, y E I ,  can be seen easily to be a Lie ideal. As p ( x ,  y )  = 

[x, y] is simply a special instance of polynomials in noncommuting variables 

x, y, our theorem can be viewed as a generalization of  this fact. 

Our theorem is very useful in reducing linear problems about polynomials to 

those about Lie ideals. Before proceeding to the proof, we give an application 

here. Let ~, d be two nonzero derivations on a prime ring R.  Posner [ 11 ] and 

Herstein [6] proved that if ~Sd(R) c_ Z ,  then Ch R = 2, d E = 0 and ~ = ~.d for 

some 2 ~ C except only when Ch R = 2 and R is 4-dimensional over its center. 
Lee [10] and Ke [8] generalizes the above result by assuming only t~d(U) c_ Z ,  

where U is a noncentral Lie ideal. Our theorem gives immediately the 

following further generalization. 

COROLLARY. Let  ~, d and R be as explained above. Le t  I be a nonzero ideal 

o f  R and p(x~, . . . , xn) be a noncentral po lynomial  with coefficients over C.  I f  

3d(p(al  . . . . .  a n ) ~ Z  for  al, . . . , an ~ I ,  then Ch R = 2, d 2 = 0 and ~ = 2d for  

some  2 E C. 

The corollary above is also a generalization of  the following result due to 

Felzenszwalb [4]: Let dbe  a nonzero derivation on a prime ring R.  Let n >= I be 

a fixed integer. Suppose d ( x  n) = 0 for all x E R .  Then R is commutative. 

Now we come to the proof of  our main theorem, which is divided into three 
cases. We begin with the easiest. 

1. The case of non-p.i, rings 

Suppose R is not a p.i. ring. By linearizing, we may assume p(xl  . . . . .  xn) is 

multilinear. Replacing I by a smaller one, we may assume p ( a l , . . . ,  an) ~ R for 

al . . . . .  an E I and hence A C_ R. Let d be an inner derivation of  R. Observe 

that d( I )  c_ I.  Using the multilinearity ofp(x~ . . . . .  xn), we have 

d(p(al  . . . .  , an)) = p(d(al) ,  a2 . . . . .  an) + P(at, d(a2) . . . .  , an) 

+ " ' "  + p ( a L , . . . , d ( a n ) ) E A .  

Hence [R, A ] _ A and A itself is a Lie ideal. A must be proper, for otherwise R 

would be a p.i. ring by lemma l [2] and theorem 1.5 [5]. 
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2. The case of p.i. rings with finite center 

Let R be a p.i. ring with Z = Z ( R )  finite. By theorem 2 (p. 57 [7]) 

R = Rz = Ms(Z) = the ring of all s × s matrices over Z, where s 2 = dim~R. R 

is simple and so I = R.  I f s  = 1, then R is commutative and p ( x l , . . . ,  xn) is 

trivially central valued. If s > l, then R possesses a nontrivial idempotent. 

Observe that A is invariant under all automorphisms of  R.  Our desired result 

follows immediately from the theorems of  [3]. 

3. The case of p.i. rings with infinite center 

This is the stickiest part of  the proof. Suppose R is a p.i. ring with Z(R) 
infinite. If R is not a domain, then we can also argue as in the previous case. 

But our proof given below works for both domains and nondomains. 

Let dimfl~ -- s 2 and K -- the quotient field of  Z(R). Note that K coincides 

with the extended centroid C. Following the notations in [7], set K(X}  = 
K(x~ . . . .  ) = t h e  polynomial ring over K in noncommuting variables 

x~, x2 . . . . .  We remark that x,  y, z, t . . . .  will also be used to denote x~, x2 . . . .  

for convenience. Set K{,(} -- K(X}/Is, where/~ is the T-ideal of  identities of  

Ms(K). Note that K(.g'} is a domain (theorem 2, p. 90, [7]) and its ring of 

central quotients, denoted by UD(K, s), is a division algebra of  degree s. Let 

Z{X}  denote the subring of  K(X}  consisting of  polynomials with coefficients 

in Z = Z(R) and Z{X} be the homomorphic image of  Z{X} under the natural 

homomorphism from K{X} onto K{.~} (sending xi to xi). 
We recall some more definitions. An element f E K ( X }  is said to be 

homogeneous in xi if each term (monomial) of  f has the same x,-degree. If f is 

homogeneous in each variable, then f i s  said to be completely homogeneous. 

We say f i s  of  degree (k~, k2, • • •, km) if the xr  degree of  f is k~ for i -- 1 . . . . .  m 

and is 0 for i > m. It is obvious that every f~K{X}  can be written uniquely as 

a sum of completely homogeneous polynomials of  distinct degrees. We write 

f = Y-.fk,. k2 . . . . .  k,,), where f ( k , ,  k2 . . . . .  k.) denotes the completely homogeneous part 

o f f  of  degree (k~ . . . . .  k,, ). Finally we define 

A0 = the additive subgroup of  K(.~} generated by 

p(s  . . . .  , s , ) ,  s ,  z ( , ( ) .  

A, = (f(x, . . . . .  xm)eK{X}  : f (x l , . . . , - rm)~Ao}-  

Observe that, for f (x~, . . . ,x , , , )EA~ and a ~ , . . . , a , , E 1 ,  we have 

f(a, . . . . .  a, ,)~A. 
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LEMMA 1. A s s u m e  A~ contains  an e lement  f(x~ . . . . .  Xm) such that  

(1) f is not  central a n d  

(2) f is l inear in s o m e  xi (i = 1 , . . . ,  m ) ,  say in Xl. 

Then  our theorem holds.  

PROOF. Choose f E A ~  which satisfies, in addition to (1) and (2) above, also 

the following 
(3) f has m i n i m u m  n u m b e r  o f  comple te ly  homogeneous  parts  with respect to 

(1) a n d  (2). 

We claim f i s  completely homogeneous. Suppose f involves  x ~ , . . . ,  Xm only. 

Sincefis  not central, one of  its completely homogeneous part, sayf~l, k ...... k,~, is 

noncentral. It suffices to show f has no other completely homogeneous parts 

thanf<~, kl . . . . .  kin)" Suppose, on the contrary, that f< 1,12 . . . . .  /,n) is another one distinct 

f romf l ,  k2 ..... k.). For a E Z ( R ) ,  

f ( x b a x 2 , . . .  ) = olk2f(l.k2 . . . .  ) ( X l  . . . .  ) 2v Oll~f~l,12 . . . .  ) ( X  1 . . . .  ) -dl- " "  " ,  

and, using the x~-linearity 

f ( a t 2 X l ,  X 2 ,  . . . ) = at~f(x,, x2, . . . ) 

= Ol12f(l,k2 . . . .  ) ( X l ,  • • • ) "q- oll2~l,12 . . . .  ) ( X l  . . . .  ) "31"- . . . .  

(Dots above denote summation over completely homogeneous parts other 

thanf<l,t~ .... ) andf<l,12 .... >.) Sowe  have 

g(x l  . . . .  ) = f ( x , ,  ax2 . . . .  ) -- f(aJ2xl, x2 . . . .  ) 

= ( o ? ~  - o 3 ) f , , k  . . . . .  ) + " • ". 

Obviously g ~AI and g contains less completely homogeneous parts than f 

since f~,t2 .... > has been canceled. By (3) above, g is central and so is its 
completely homogeneous part (ak~--al~)f~t.~ ~ .... >. But f~,~ ..... ~ has been 
assumed to be noncentral. We have a k~ = a t2 = 0. This holds for all a lying in 

the infinite set Z ( R ) .  k2 = 12 follows. Using the same argument, we can show 

k3 = 13, . . . ,  km= lm. This is absurd! 

By replacing our p by f a b o v e ,  we may assume our p is linear in x~ and is 

completely homogeneous. Set Z0 = the center of  Z{X} and Z2 = the center of  

UD(K,  s)  Define 

B = {g(X~ . . . . .  )a-~ : g(X~ . . . .  )~Ao and a E Z o  - {0}}. 

Since p is linear in x~ and is completely homogeneous, B is equal to the additive 
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subgroup of  UD(K, s) generated by p(dt . . . . .  dn), d~ . . . . .  dn ~ UD(K, s). So B 

is an invariant Zrsubspace  of  UD(K,s).  By theorem 7 [1], B D_ 
[UD(K, s), UD(K, s)]. Thus there exists a nonzero central polynomial c(x, y) 

in Z { X }  such that c(x, y)[x, y] EA~. Note that we have left out variables other 

than x, y in c(x, y). Since p is linear in x~, A~ is a Z(R)-module.  Using the fact 

that Z(R)  is infinite, we may assume c(x, y) is completely homogeneous. Let z 

be a new variable. Linearizing x, we have 

a = c(x + z, y ) [x  + z, y] - c(x,  y) [x ,  y]  - c(z,  y) [z ,  y]  CAl.  

Set I = the x-degree ofc(x ,  y) and let r = the sum of terms in a whose z-degee 

is 1. Rewrite a as 

a = (c(x + z, y) - c(x, y))[x, y] + (c(x + z, y) - c(z, y))[z, y]; 

w e  can see that ~ is of  the form 

z = c(z, y)[x, y] + c'(x, z, y)[z, y] 

where c'(x, z, y) is another central element in Z{X} .  Using the fact that A~ is a 

Z(R)-module  and Z(R)  is infinite, we can see that there exists a E Z ( R )  - {0} 

such that ar  EA~. Since p is linear in Xl, A~ is also closed under multiplication 

by central elements of  Z ( X } .  So ac(z, y)z ~A~. Write 

ac(z, y)z = ac(z, y)2[X, y] + ac'(x, z, y)c(z, y)[z, y]EAt  

and note 

ac'(x, z, y)c(z, y)[z, y ]Eac ' (x ,  z,  y)A~ C_ A1. 

We have ac(z ,y )2[x ,y]EAt .  Repeating this argument for y, we have 
pc(z, w)4[x, y]EA1 for some B ~ Z ( R ) -  (0} and another new variable, w. 

Now pick elements o f / s o  that the evaluation of  pc(z, w) 4 on these elements is 

some nonzero 7 E Z .  Then A D 711, I] as desired. 

To producefEA~ as described in Lemma 1, we need some sort of  lineariza- 

tion. Let us recall the difference operator A~, in K { X }  (p. 16, [7]): Let 

f ( x l , . . . ,  x , , ) E K { X } .  Then for 1 ~ i _-< m, we define 

A~f(x,, . . . , xm) = f (x ,  . . . . .  x i - l ,  Xi "~- Y ,  X i+l  . . . . .  X m )  

- -  f ( x  I . . . . .  X i ,  . . . , X m ) - -  f ( X l  . . . . .  X i - l ,  Y ,  X i+ l  . . . . .  Xm) .  

We also need the differential operator D~, which we define right here. 
(1) Let m( . . . .  xi, • • • ) be a monomial in K{X} .  A monomial g is called a 
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variation o f  m at x, by y if g is obtained from m by substituting y for one 

occurrence ofxi in m. In case that m does not involve xi, we set the variation of 

m at xi by y to be 0. 

E.g. Let m(xl ,  x2) = x 2 x 2 x l  . Then yxtx2x~, xlyx2xi, X21x2Y a r e  (all the) varia- 
tions of m at xi by y. 

(2) For a monomial m in K ( X } ,  D~,m is defined to be the sum ofal ld is t inct  

variations of m at x~ by y. 

E.g. For m in the example above, we have D~,m = yx~x2x~ + XlyX2X 1 + 

x~xzv. 
(3) For f ~ K { X }  in general, write f =  Emk where ink'S are monomials. 

Define D~f to  be ED~,mk. The well-definedness is obvious. 

The following lemma is what we need about these two operators. 

LEMMA 2. Let  f (x l  . . . .  , X m ) E K ( X }  involve only x~ . . . . .  Xm. 

(1) Suppose d is an inner derivation o f  R . Then for a~ . . . .  , am ~ R , 

df(a,, . . . , am) = ~ D~(a,lf(al, . . . , am). 
i = 1  

(Here we abuse the notations in an obvious way.) 

(2) Suppose the xi-degree o f  each monomial  o f f  is larger than 1. Then 

D~f  = the sum of  terms in A~f  whose y-degree is 1. 

(3) Write f = Ef~k ...... k,J, where f~k ...... k,) is the completely homogeneous part 

o f f  o f  degree ( k~ . . . . .  kin). I f  A~f  is central for all i = 1 , . . . ,  m ,  then each 

completely homogeneous part f~k ...... k,) such that k~ > 1 . . . . .  k m >  1 must be 
central. 

PROOF. (1) and (2): It is obvious by direct expansion whenf is  a monomial. 
Since d, D~,, and A~, are all linear, the result extends easily to arbitrary 

f E K { X } .  

(3) Suppose kl > 1 , . . . ,  km > 1. By (1) and (2) above, dfk ...... k , ) (a~, . . . ,  am) 

is central for any inner derivation d. This implies easily that f k  ...... k,) is 
central. 

Let us choosefEA~ such that 

(1) f i s  noncentral. 

(2) f i s  of  minimum height with respect to (I). (Height is defined in p. 15 
[7].) 

(3) f contains minimum number of distinct nonzero completely homo- 
geneous parts with respect to (1) and (2). 
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L E M M A  3. Suppose f =  f ( x l  . . . . .  x , , )EA~  satisfies (1), (2), (3) above. Then 

(1) there is only one completely  homogeneous part  o f  f that is noncentral  and  

(2) for  this noncentral completely homogeneous part ,  say f k  ...... k.>, one o/ 

k~ . . . . .  k,, mus t  be 1. 

PROOF. By (3) above, f must  be blended. We may assume k~ >_- 1 , . . . ,  k,, _-_ 

1 for each completely homogeneous part f k  ...... k.>. Since f is assumed to be 

noncentral,  one of  its completely homogeneous  parts, saYfk ...... k.>, is noncen- 

tral. Suppose f t  ...... t.) is another  completely homogeneous part  distinct from 

f k  ...... k.). Then for a E Z ( R ) ,  

f(at 'xl ,  x2, . . . ) = ak't2fk ...... k,,)(Xl . . . . .  X,,) 

+ al'~2f~ ...... t.>(x~ . . . . .  x , , )  + . . . ,  

f ( X l ,  Oft'X2 . . . .  ) = o~k'llf(k . . . . . .  k . I (X l  . . . . .  Xrn) 

+ ,~t't~fl .. . . . .  l.>(x~ . . . . .  x , , )  + . . . .  

Let g(xl ,  x2, . . • ) = f(at2xb x2 . . . .  ) - f i x ,  al,x2 . . . .  ). Then g takes the form 

g(xl  . . . . .  Xm) = ( ~k l12  - -  ak211)fk  . . . . . .  k,,,) (x l  . . . . .  X m )  "~- °* °;  

g contains less completely homogeneous  parts than f .  It is also obvious  that 

g E A ~  and height g ___< height f .  Hence g must  be central and so must  its 
completely homogeneous  part (ak,t2- ak2t,)f k ...... k,>. Thus ak, t, = ak, t' and this 

implies k~/l~ = k2/12. Repeating the same argument,  we have kt/l~ = k2/l: = 

. . . .  k,,/l,,,. 

S i n c e f i s  of  min imum height among noncentral elements o f A ,  A~fmust  be 

central for i = 1 . . . . .  m.  By (3) o f  Lemma 2, iffi,,...,i,,) is noncentral, then 

one of  i ~ , . . . ,  i,, must  be 1. Hence one of  k~ . . . . .  k,,, say kl, is 1. For any 

f t  ...... t.) other t h a n f k  ...... k,.), we have l 2 ----- k 2 l l , . . . ,  lm= kmll by the result o f  the 
previous paragraph. If  l~ = 1, then 12 = k2,. • •, l m =  kin. This contradicts the 

distinctness o f f t , k ,  ..... k.> andft, , t ,  ..... ~.>. Hence  none ofl~ . . . . .  l,, can be 1. By 

(3) o f  Lemma 2 again f t  ...... t.) must  be central. This finishes the proof. 

Let f k  ...... k.) with k~ = 1 be the only noncentral completely homogeneous  

part  o f f .  Write f k  ...... k.> = fl for short. Then f = Co + f ,  where Co is a central 
polynomial.  A little reflection will show this is the best form that linearization 

process can give. To obtain our desired f ,  we need another  technique, which is 

contained in 

LEMMA 4. A~ does contain an e lement  as described in L e m m a  1. 



Vol. 59, 1987 ADDITIVE SUBGROUP 105 

PROOF. Let t~ be a new variable distinct f rom xl, • • •, xm. By theorem 1 on 

p. 44 of[7], there is h ( t )  = h ( 6 ,  t2 . . . .  ) ~ Z { X }  such that  6 h ( t )  = h ( t ) 6  = c( t ) ,  

where c ( t )  is a nonzero central polynomial.  We may  assume the variables 

fi, t2 . . . .  involved in h ( t )  are all distinct f rom x~ . . . . .  x,~. We may also assume 

h ( t )  is completely homogeneous.  Set g ( t ,  x )  = f ( c ( t ) x l  . . . . .  c ( t ) xm ). We intro- 

duce the following notations for s impl ic i ty : / fo r  (t], t~ , . . .  ), R for (:¢, . . . . .  xm), 

h for h(t-) = h ( 6 ,  t2 . . . .  ) and # for c ( D  = c( t l ,  t2 . . . .  ). Now working in 

U D ( K ,  s) ,  we have 

t]g([,  X ) h / e  = t]f(ex~, ex2 . . . . .  ex , , ){C L 

= f ( { l e R , { i - '  . . . . .  t ] e X , . { l - ' )  

= f({l .C,h . . . .  , [llx,,t~)U-Ao. 

Assume 1 + k2 + • • • + k,, = l. Using the fact that  co is central, we have 

t]g( [, .¢)h1¢ = Co( eR, . . . . .  eXm) + f i r ( R ,  . . . . .  ~¢m)e t -  lb.  

Hence 

g ( X ,  {) - t]g({,  .~)h /e  = f(e~¢, . . . .  , dx , , )  - [~f(~¢, . . . . .  . ¢ , , ) d - ' h  

= e Z ( x ,  . . . .  , X m )  - -  t]f (x, . . . .  , x )ct-'fieao. 

Thus c ( t ) ~ ( x )  - 6 f ( x ) c ( t )  t -  lh( t )~_A~ and is linear in x~. So it suffices to show 

this element is not central. 

Suppose on the contrary that  c ~  - 6 f ~ d -  ~h is central. Working in K{..(}, we 

havef~ - { ~ f f ?  ~ = a ~- the center of  Z {X}. Replacing t ~ by t ~ + 1, we have also 

that  f ~ -  (t~ + 1)f~(/, + 1 ) - l = f l ~ t h e  center of  Z{.(}.  Hence f f , - [ ~ f l  = 

at] = flU] + 1). I f  a # fl, then t] would be central, absurd! So a = fl and then 

fl = 0. Sol,  t] = till. This impliesf l  is central, absurd again. This completes our 

proof. 
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