

THE ADDITIVE SUBGROUP GENERATED BY A POLYNOMIAL

BY

C.-L. CHUANG

Department of Mathematics, National Taiwan University, Taipei, Taiwan, Republic of China

ABSTRACT

Suppose R is a prime ring with the center Z and the extended centroid C . Let $p(x_1, \dots, x_n)$ be a polynomial over C in noncommuting variables x_1, \dots, x_n . Let I be a nonzero ideal of R and A be the additive subgroup of RC generated by $\{p(a_1, \dots, a_n) : a_1, \dots, a_n \in I\}$. Then either $p(x_1, \dots, x_n)$ is central valued or A contains a noncentral Lie ideal of R except in the only one case where R is the ring of all 2×2 matrices over $GF(2)$, the integers mod 2.

In what follows, R will always be an associative prime ring. $Z(R)$ will stand for the center of R and C , for its extended centroid. For $x, y \in R$, $[x, y] = xy - yx$. For subsets S, T of R , $[S, T]$ denotes the additive subgroup generated by $[s, t], s \in S, t \in T$. By a Lie ideal of R , we mean an additive subgroup U of R such that $[U, R] \subseteq U$. As in [3], we call a Lie ideal U proper if $[M, R] \subseteq U$ for some nonzero ideal M of R .

Let $p(x_1, \dots, x_n)$ be a polynomial over C in noncommuting variables x_1, \dots, x_n . Our main objective is the following

THEOREM. *Let I be a nonzero ideal of R and A be the additive subgroup (of RC) generated by $\{p(a_1, \dots, a_n) : a_1, \dots, a_n \in I\}$. Then either $p(x_1, \dots, x_n)$ is central valued or A contains a proper Lie ideal of R , except in the only one case where R is the ring of all 2×2 matrices over $GF(2)$, the integers mod 2.*

In [9], some special cases of our main theorem are proved. But there p is assumed to be *strongly noncentral*. Actually, the most intricate part of our proof is exactly devoted to removing this assumption. Also in [9], R is assumed to be a k -algebra, where k is a commutative ring with 1, and it is the k -submodule generated by all specialization of p , the so-called extended range of p , that is shown to contain noncentral Lie ideals. In this context, our theorem

Received May 21, 1986 and in revised form September 1, 1986

gives the most general possible formulation. These remarks may justify the length of this paper.

It is proved in [2] and [5] that in a prime ring R , any noncentral Lie ideal U of R is proper except only when $\text{Ch } R = 2$ and R is 4-dimensional over its center. Conversely, for any nonzero ideal I of R , $[I, I]$, the additive subgroup generated by $[x, y]$, $x, y \in I$, can be seen easily to be a Lie ideal. As $p(x, y) = [x, y]$ is simply a special instance of polynomials in noncommuting variables x, y , our theorem can be viewed as a generalization of this fact.

Our theorem is very useful in reducing *linear* problems about polynomials to those about Lie ideals. Before proceeding to the proof, we give an application here. Let δ, d be two *nonzero* derivations on a prime ring R . Posner [11] and Herstein [6] proved that if $\delta d(R) \subseteq Z$, then $\text{Ch } R = 2$, $d^2 = 0$ and $\delta = \lambda d$ for some $\lambda \in C$ except only when $\text{Ch } R = 2$ and R is 4-dimensional over its center. Lee [10] and Ke [8] generalizes the above result by assuming only $\delta d(U) \subseteq Z$, where U is a noncentral Lie ideal. Our theorem gives immediately the following further generalization.

COROLLARY. *Let δ, d and R be as explained above. Let I be a nonzero ideal of R and $p(x_1, \dots, x_n)$ be a noncentral polynomial with coefficients over C . If $\delta d(p(a_1, \dots, a_n)) \in Z$ for $a_1, \dots, a_n \in I$, then $\text{Ch } R = 2$, $d^2 = 0$ and $\delta = \lambda d$ for some $\lambda \in C$.*

The corollary above is also a generalization of the following result due to Felzenszwalb [4]: Let d be a *nonzero* derivation on a prime ring R . Let $n \geq 1$ be a fixed integer. Suppose $d(x^n) = 0$ for all $x \in R$. Then R is commutative.

Now we come to the proof of our main theorem, which is divided into three cases. We begin with the easiest.

1. The case of non-p.i. rings

Suppose R is not a p.i. ring. By linearizing, we may assume $p(x_1, \dots, x_n)$ is multilinear. Replacing I by a smaller one, we may assume $p(a_1, \dots, a_n) \in R$ for $a_1, \dots, a_n \in I$ and hence $A \subseteq R$. Let d be an inner derivation of R . Observe that $d(I) \subseteq I$. Using the multilinearity of $p(x_1, \dots, x_n)$, we have

$$\begin{aligned} d(p(a_1, \dots, a_n)) &= p(d(a_1), a_2, \dots, a_n) + p(a_1, d(a_2), \dots, a_n) \\ &\quad + \dots + p(a_1, \dots, d(a_n)) \in A. \end{aligned}$$

Hence $[R, A] \subseteq A$ and A itself is a Lie ideal. A must be proper, for otherwise R would be a p.i. ring by lemma 1 [2] and theorem 1.5 [5].

2. The case of p.i. rings with finite center

Let R be a p.i. ring with $Z = Z(R)$ finite. By theorem 2 (p. 57 [7]) $R = R_z = M_s(Z)$ = the ring of all $s \times s$ matrices over Z , where $s^2 = \dim_z R$. R is simple and so $I = R$. If $s = 1$, then R is commutative and $p(x_1, \dots, x_n)$ is trivially central valued. If $s > 1$, then R possesses a nontrivial idempotent. Observe that A is invariant under all automorphisms of R . Our desired result follows immediately from the theorems of [3].

3. The case of p.i. rings with infinite center

This is the stickiest part of the proof. Suppose R is a p.i. ring with $Z(R)$ infinite. If R is not a domain, then we can also argue as in the previous case. But our proof given below works for both domains and nondomains.

Let $\dim_z R = s^2$ and $K =$ the quotient field of $Z(R)$. Note that K coincides with the extended centroid C . Following the notations in [7], set $K\{X\} = K\{x_1, \dots\} =$ the polynomial ring over K in noncommuting variables x_1, x_2, \dots . We remark that x, y, z, t, \dots will also be used to denote x_1, x_2, \dots for convenience. Set $K\{\bar{X}\} = K\{X\}/I_s$, where I_s is the T -ideal of identities of $M_s(K)$. Note that $K\{\bar{X}\}$ is a domain (theorem 2, p. 90, [7]) and its ring of central quotients, denoted by $UD(K, s)$, is a division algebra of degree s . Let $Z\{X\}$ denote the subring of $K\{X\}$ consisting of polynomials with coefficients in $Z = Z(R)$ and $Z\{\bar{X}\}$ be the homomorphic image of $Z\{X\}$ under the natural homomorphism from $K\{X\}$ onto $K\{\bar{X}\}$ (sending x_i to \bar{x}_i).

We recall some more definitions. An element $f \in K\{X\}$ is said to be homogeneous in x_i if each term (monomial) of f has the same x_i -degree. If f is homogeneous in each variable, then f is said to be completely homogeneous. We say f is of degree $\langle k_1, k_2, \dots, k_m \rangle$ if the x_i -degree of f is k_i for $i = 1, \dots, m$ and is 0 for $i > m$. It is obvious that every $f \in K\{X\}$ can be written uniquely as a sum of completely homogeneous polynomials of *distinct* degrees. We write $f = \sum f_{\langle k_1, k_2, \dots, k_m \rangle}$, where $f_{\langle k_1, k_2, \dots, k_m \rangle}$ denotes the completely homogeneous part of f of degree $\langle k_1, \dots, k_m \rangle$. Finally we define

$$A_0 = \text{the additive subgroup of } K\{\bar{X}\} \text{ generated by} \\ p(s_1, \dots, s_n), s_1, \dots, s_n \in Z\{\bar{X}\}.$$

$$A_1 = \{f(x_1, \dots, x_m) \in K\{X\} : f(\bar{x}_1, \dots, \bar{x}_m) \in A_0\}.$$

Observe that, for $f(x_1, \dots, x_m) \in A_1$ and $a_1, \dots, a_m \in I$, we have $f(a_1, \dots, a_m) \in A$.

LEMMA 1. Assume A_1 contains an element $f(x_1, \dots, x_m)$ such that

- (1) f is not central and
- (2) f is linear in some x_i ($i = 1, \dots, m$), say in x_1 .

Then our theorem holds.

PROOF. Choose $f \in A_1$ which satisfies, in addition to (1) and (2) above, also the following

- (3) f has minimum number of completely homogeneous parts with respect to (1) and (2).

We claim f is completely homogeneous. Suppose f involves x_1, \dots, x_m only. Since f is not central, one of its completely homogeneous part, say $f_{(1, k_2, \dots, k_m)}$, is noncentral. It suffices to show f has no other completely homogeneous parts than $f_{(1, k_2, \dots, k_m)}$. Suppose, on the contrary, that $f_{(1, l_2, \dots, l_m)}$ is another one distinct from $f_{(1, k_2, \dots, k_m)}$. For $\alpha \in Z(R)$,

$$f(x_1, \alpha x_2, \dots) = \alpha^{k_2} f_{(1, k_2, \dots)}(x_1, \dots) + \alpha^{l_2} f_{(1, l_2, \dots)}(x_1, \dots) + \dots,$$

and, using the x_1 -linearity

$$\begin{aligned} f(\alpha^{l_2} x_1, x_2, \dots) &= \alpha^{l_2} f(x_1, x_2, \dots) \\ &= \alpha^{l_2} f_{(1, k_2, \dots)}(x_1, \dots) + \alpha^{l_2} f_{(1, l_2, \dots)}(x_1, \dots) + \dots. \end{aligned}$$

(Dots above denote summation over completely homogeneous parts other than $f_{(1, k_2, \dots)}$ and $f_{(1, l_2, \dots)}$.) So we have

$$\begin{aligned} g(x_1, \dots) &= f(x_1, \alpha x_2, \dots) - f(\alpha^{l_2} x_1, x_2, \dots) \\ &= (\alpha^{k_2} - \alpha^{l_2}) f_{(1, k_2, \dots)} + \dots. \end{aligned}$$

Obviously $g \in A_1$ and g contains less completely homogeneous parts than f since $f_{(1, l_2, \dots)}$ has been canceled. By (3) above, g is central and so is its completely homogeneous part $(\alpha^{k_2} - \alpha^{l_2}) f_{(1, k_2, \dots)}$. But $f_{(1, k_2, \dots)}$ has been assumed to be noncentral. We have $\alpha^{k_2} = \alpha^{l_2} = 0$. This holds for all α lying in the infinite set $Z(R)$. $k_2 = l_2$ follows. Using the same argument, we can show $k_3 = l_3, \dots, k_m = l_m$. This is absurd!

By replacing our p by f above, we may assume our p is linear in x_1 and is completely homogeneous. Set Z_0 = the center of $Z\{\bar{X}\}$ and Z_2 = the center of $UD(K, s)$. Define

$$B = \{g(\bar{x}_1, \dots) \alpha^{-1} : g(\bar{x}_1, \dots) \in A_0 \text{ and } \alpha \in Z_0 - \{0\}\}.$$

Since p is linear in x_1 and is completely homogeneous, B is equal to the additive

subgroup of $UD(K, s)$ generated by $p(d_1, \dots, d_n)$, $d_1, \dots, d_n \in UD(K, s)$. So B is an invariant Z_2 -subspace of $UD(K, s)$. By theorem 7 [1], $B \supseteq [UD(K, s), UD(K, s)]$. Thus there exists a nonzero central polynomial $c(x, y)$ in $Z\{X\}$ such that $c(x, y)[x, y] \in A_1$. Note that we have left out variables other than x, y in $c(x, y)$. Since p is linear in x_1 , A_1 is a $Z(R)$ -module. Using the fact that $Z(R)$ is infinite, we may assume $c(x, y)$ is completely homogeneous. Let z be a new variable. Linearizing x , we have

$$\sigma = c(x + z, y)[x + z, y] - c(x, y)[x, y] - c(z, y)[z, y] \in A_1.$$

Set $l =$ the x -degree of $c(x, y)$ and let $\tau =$ the sum of terms in σ whose z -degree is l . Rewrite σ as

$$\sigma = (c(x + z, y) - c(x, y))[x, y] + (c(x + z, y) - c(z, y))[z, y];$$

we can see that τ is of the form

$$\tau = c(z, y)[x, y] + c'(x, z, y)[z, y]$$

where $c'(x, z, y)$ is another central element in $Z\{X\}$. Using the fact that A_1 is a $Z(R)$ -module and $Z(R)$ is infinite, we can see that there exists $\alpha \in Z(R) - \{0\}$ such that $\alpha\tau \in A_1$. Since p is linear in x_1 , A_1 is also closed under multiplication by central elements of $Z\{X\}$. So $\alpha c(z, y)\tau \in A_1$. Write

$$\alpha c(z, y)\tau = \alpha c(z, y)^2[x, y] + \alpha c'(x, z, y)c(z, y)[z, y] \in A_1$$

and note

$$\alpha c'(x, z, y)c(z, y)[z, y] \in \alpha c'(x, z, y)A_1 \subseteq A_1.$$

We have $\alpha c(z, y)^2[x, y] \in A_1$. Repeating this argument for y , we have $\beta c(z, w)^4[x, y] \in A_1$ for some $\beta \in Z(R) - \{0\}$ and another new variable, w . Now pick elements of I so that the evaluation of $\beta c(z, w)^4$ on these elements is some nonzero $\gamma \in Z$. Then $A \supseteq \gamma[I, I]$ as desired.

To produce $f \in A_1$ as described in Lemma 1, we need some sort of linearization. Let us recall the *difference operator* Δ_y^x in $K\{X\}$ (p. 16, [7]): Let $f(x_1, \dots, x_m) \in K\{X\}$. Then for $1 \leq i \leq m$, we define

$$\begin{aligned} \Delta_y^x f(x_1, \dots, x_m) &= f(x_1, \dots, x_{i-1}, x_i + y, x_{i+1}, \dots, x_m) \\ &\quad - f(x_1, \dots, x_i, \dots, x_m) - f(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_m). \end{aligned}$$

We also need the *differential operator* D_y^x which we define right here.

(1) Let $m(\dots, x_i, \dots)$ be a monomial in $K\{X\}$. A monomial g is called a

variation of m at x_i by y if g is obtained from m by substituting y for *one* occurrence of x_i in m . In case that m does not involve x_i , we set the variation of m at x_i by y to be 0.

E.g. Let $m(x_1, x_2) = x_1^2 x_2 x_1$. Then $yx_1 x_2 x_1$, $x_1 y x_2 x_1$, $x_1^2 x_2 y$ are (all the) variations of m at x_i by y .

(2) For a monomial m in $K\{X\}$, $D_y^x m$ is defined to be the sum of *all* distinct variations of m at x_i by y .

E.g. For m in the example above, we have $D_y^x m = yx_1 x_2 x_1 + x_1 y x_2 x_1 + x_1^2 x_2 y$.

(3) For $f \in K\{X\}$ in general, write $f = \sum m_k$ where m_k 's are monomials. Define $D_y^x f$ to be $\sum D_y^x m_k$. The well-definedness is obvious.

The following lemma is what we need about these two operators.

LEMMA 2. *Let $f(x_1, \dots, x_m) \in K\{X\}$ involve only x_1, \dots, x_m .*

(1) *Suppose d is an inner derivation of R . Then for $a_1, \dots, a_m \in R$,*

$$df(a_1, \dots, a_m) = \sum_{i=1}^m D_{d(a_i)}^a f(a_1, \dots, a_m).$$

(Here we abuse the notations in an obvious way.)

(2) *Suppose the x_i -degree of each monomial of f is larger than 1. Then $D_y^x f =$ the sum of terms in $\Delta_y^x f$ whose y -degree is 1.*

(3) *Write $f = \sum f_{(k_1, \dots, k_m)}$, where $f_{(k_1, \dots, k_m)}$ is the completely homogeneous part of f of degree $\langle k_1, \dots, k_m \rangle$. If $\Delta_y^x f$ is central for all $i = 1, \dots, m$, then each completely homogeneous part $f_{(k_1, \dots, k_m)}$ such that $k_1 > 1, \dots, k_m > 1$ must be central.*

PROOF. (1) and (2): It is obvious by direct expansion when f is a monomial. Since d , D_y^x , and Δ_y^x are all linear, the result extends easily to arbitrary $f \in K\{X\}$.

(3) Suppose $k_1 > 1, \dots, k_m > 1$. By (1) and (2) above, $df_{(k_1, \dots, k_m)}(a_1, \dots, a_m)$ is central for any inner derivation d . This implies easily that $f_{(k_1, \dots, k_m)}$ is central.

Let us choose $f \in A_1$ such that

(1) f is noncentral.

(2) f is of minimum height with respect to (1). (Height is defined in p. 15 [7].)

(3) f contains minimum number of distinct nonzero completely homogeneous parts with respect to (1) and (2).

LEMMA 3. Suppose $f = f(x_1, \dots, x_m) \in A_1$ satisfies (1), (2), (3) above. Then (1) there is only one completely homogeneous part of f that is noncentral and (2) for this noncentral completely homogeneous part, say $f_{(k_1, \dots, k_m)}$, one of k_1, \dots, k_m must be 1.

PROOF. By (3) above, f must be blended. We may assume $k_1 \geq 1, \dots, k_m \geq 1$ for each completely homogeneous part $f_{(k_1, \dots, k_m)}$. Since f is assumed to be noncentral, one of its completely homogeneous parts, say $f_{(k_1, \dots, k_m)}$, is noncentral. Suppose $f_{(l_1, \dots, l_m)}$ is another completely homogeneous part distinct from $f_{(k_1, \dots, k_m)}$. Then for $\alpha \in Z(R)$,

$$\begin{aligned} f(\alpha^{l_1}x_1, x_2, \dots) &= \alpha^{k_1l_1}f_{(k_1, \dots, k_m)}(x_1, \dots, x_m) \\ &\quad + \alpha^{l_1l_2}f_{(l_1, \dots, l_m)}(x_1, \dots, x_m) + \dots, \\ f(x_1, \alpha^{l_1}x_2, \dots) &= \alpha^{k_2l_1}f_{(k_1, \dots, k_m)}(x_1, \dots, x_m) \\ &\quad + \alpha^{l_1l_2}f_{(l_1, \dots, l_m)}(x_1, \dots, x_m) + \dots. \end{aligned}$$

Let $g(x_1, x_2, \dots) = f(\alpha^{l_1}x_1, x_2, \dots) - f(x_1, \alpha^{l_1}x_2, \dots)$. Then g takes the form

$$g(x_1, \dots, x_m) = (\alpha^{k_1l_1} - \alpha^{k_2l_1})f_{(k_1, \dots, k_m)}(x_1, \dots, x_m) + \dots;$$

g contains less completely homogeneous parts than f . It is also obvious that $g \in A_1$ and height $g \leq$ height f . Hence g must be central and so must its completely homogeneous part $(\alpha^{k_1l_1} - \alpha^{k_2l_1})f_{(k_1, \dots, k_m)}$. Thus $\alpha^{k_1l_1} = \alpha^{k_2l_1}$ and this implies $k_1/l_1 = k_2/l_2$. Repeating the same argument, we have $k_1/l_1 = k_2/l_2 = \dots = k_m/l_m$.

Since f is of minimum height among noncentral elements of A_1 , $\Delta_y^x f$ must be central for $i = 1, \dots, m$. By (3) of Lemma 2, if $f_{(i_1, \dots, i_m)}$ is noncentral, then one of i_1, \dots, i_m must be 1. Hence one of k_1, \dots, k_m , say k_1 , is 1. For any $f_{(l_1, \dots, l_m)}$ other than $f_{(k_1, \dots, k_m)}$, we have $l_2 = k_2l_1, \dots, l_m = k_ml_1$ by the result of the previous paragraph. If $l_1 = 1$, then $l_2 = k_2, \dots, l_m = k_m$. This contradicts the distinctness of $f_{(1, k_2, \dots, k_m)}$ and $f_{(l_1, l_2, \dots, l_m)}$. Hence none of l_1, \dots, l_m can be 1. By (3) of Lemma 2 again $f_{(l_1, \dots, l_m)}$ must be central. This finishes the proof.

Let $f_{(k_1, \dots, k_m)}$ with $k_1 = 1$ be the only noncentral completely homogeneous part of f . Write $f_{(k_1, \dots, k_m)} = f_1$ for short. Then $f = c_0 + f_1$, where c_0 is a central polynomial. A little reflection will show this is the best form that linearization process can give. To obtain our desired f , we need another technique, which is contained in

LEMMA 4. A_1 does contain an element as described in Lemma 1.

PROOF. Let t_1 be a new variable distinct from x_1, \dots, x_m . By theorem 1 on p. 44 of [7], there is $h(t) = h(t_1, t_2, \dots) \in Z\{X\}$ such that $t_1 h(t) = h(t)t_1 = c(t)$, where $c(t)$ is a nonzero central polynomial. We may assume the variables t_1, t_2, \dots involved in $h(t)$ are all distinct from x_1, \dots, x_m . We may also assume $h(t)$ is completely homogeneous. Set $g(t, x) = f(c(t)x_1, \dots, c(t)x_m)$. We introduce the following notations for simplicity: \bar{t} for $(\bar{t}_1, \bar{t}_2, \dots)$, \bar{x} for $(\bar{x}_1, \dots, \bar{x}_m)$, \bar{h} for $h(\bar{t}) = h(\bar{t}_1, \bar{t}_2, \dots)$ and \bar{c} for $c(\bar{t}) = c(\bar{t}_1, \bar{t}_2, \dots)$. Now working in $UD(K, s)$, we have

$$\begin{aligned}\bar{t}_1 g(\bar{t}, \bar{x}) \bar{h} / \bar{c} &= \bar{t}_1 f(\bar{c}\bar{x}_1, \bar{c}\bar{x}_2, \dots, \bar{c}\bar{x}_m) \bar{t}_1^{-1} \\ &= f(\bar{t}_1 \bar{c}\bar{x}_1 \bar{t}_1^{-1}, \dots, \bar{t}_1 \bar{c}\bar{x}_m \bar{t}_1^{-1}) \\ &= f(\bar{t}_1 \bar{x}_1 \bar{h}, \dots, \bar{t}_1 \bar{x}_m \bar{h}) \in A_0.\end{aligned}$$

Assume $1 + k_2 + \dots + k_m = l$. Using the fact that c_0 is central, we have

$$\bar{t}_1 g(\bar{t}, \bar{x}) \bar{h} / \bar{c} = c_0(\bar{c}\bar{x}_1, \dots, \bar{c}\bar{x}_m) + \bar{t}_1 f_1(\bar{x}_1, \dots, \bar{x}_m) \bar{c}^{l-1} \bar{h}.$$

Hence

$$\begin{aligned}g(\bar{x}, \bar{t}) - \bar{t}_1 g(\bar{t}, \bar{x}) \bar{h} / \bar{c} &= f_1(\bar{c}\bar{x}_1, \dots, \bar{c}\bar{x}_m) - \bar{t}_1 f_1(\bar{x}_1, \dots, \bar{x}_m) \bar{c}^{l-1} \bar{h} \\ &= \bar{c}^l f_1(\bar{x}_1, \dots, \bar{x}_m) - \bar{t}_1 f_1(\bar{x}_1, \dots, \bar{x}_m) \bar{c}^{l-1} \bar{h} \in A_0.\end{aligned}$$

Thus $c(t)^l f_1(x) - t_1 f_1(x) c(t)^{l-1} h(t) \in A_1$ and is linear in x_1 . So it suffices to show this element is not central.

Suppose on the contrary that $c^l f_1 - t_1 f_1 c^{l-1} h$ is central. Working in $K\{\bar{X}\}$, we have $\bar{f}_1 - \bar{t}_1 \bar{f}_1 \bar{t}_1^{-1} = \alpha \in$ the center of $Z\{\bar{X}\}$. Replacing t_1 by $t_1 + 1$, we have also that $\bar{f}_1 - (\bar{t}_1 + 1) \bar{f}_1 (\bar{t}_1 + 1)^{-1} = \beta \in$ the center of $Z\{\bar{X}\}$. Hence $\bar{f}_1 \bar{t}_1 - \bar{t}_1 \bar{f}_1 = \alpha \bar{t}_1 = \beta (\bar{t}_1 + 1)$. If $\alpha \neq \beta$, then \bar{t}_1 would be central, absurd! So $\alpha = \beta$ and then $\beta = 0$. So $\bar{f}_1 \bar{t}_1 = \bar{t}_1 \bar{f}_1$. This implies f_1 is central, absurd again. This completes our proof.

REFERENCES

1. S. Asano, *On invariant subspaces of division algebras*, Kodai Math. **18** (1966), 322–334.
2. J. Bergen, I. N. Herstein and J. W. Kerr, *Lie ideals and derivations of prime rings*, J. Algebra **71** (1981), 259–267.
3. C.-L. Chuang, *On invariant additive subgroups*, Isr. J. Math. **57** (1987), 116–128.
4. B. Felzenszwalb, *Derivations in prime rings*, Proc. Amer. Math. Soc. **84** (1982), 16–20.
5. I. N. Herstein, *Topics in Ring Theory*, Univ. of Chicago Press, Chicago, 1969.
6. I. N. Herstein, *A note on derivations II*, Canad. Math. Bull. **22** (1979), 509–511.
7. N. Jacobson, *P.I. Algebras, An Introduction*, Lecture Notes in Mathematics, No. 441, Springer-Verlag, Berlin/New York, 1975.

8. W.-F. Ke, *On derivations of prime rings of characteristic 2*, Chinese J. Math. **13** (1985), 273–290.
9. A. Kovacs, *On the nonexistence of hypercommuting polynomials*, Proc. Amer. Math. Soc. **66** (1977), 241–246.
10. P. H. Lee and T. K. Lee, *Lie ideals of prime rings with derivations*, Bull. Inst. Math. Acad. Sinica **11**(1) (1983), 75–80.
11. E. Posner, *Derivations in prime rings*, Proc. Amer. Math. Soc. **8** (1957), 1093–1100.