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ABSTRACT
Suppose R is a prime ring with the center Z and the extended centroid C. Let
p(xy, . . ., x,) be a polynomial over C in noncommuting variables x, . . ., X,.
Let I be a nonzero ideal of R and A4 be the additive subgroup of RC generated
by {pla;,...,a,):ay,...,a,€I}. Theneither p(xy, ..., x,)is central valued
or A contains a noncentral Lie ideal of R except in the only one case where R is
the ring of all 2 X 2 matrices over GF(2), the integers mod 2.

In what follows, R will always be an associative prime ring. Z(R) will stand
for the center of R and C, for its extended centroid. For x, yER, [x, y] =
xy — yx.Forsubsets S, Tof R, [S, T] denotes the additive subgroup generated
by[s, t],sES, t€T.ByaLieideal of R, we mean an additive subgroup Uof R
such that [U, R] C U. As in [3], we call a Lie ideal U proper if [M, R] C U for
some nonzero ideal M of R.

Let p(x;,...,x,) be a polynomial over C in noncommuting variables
X5+« + s Xp. Our main objective is the following

THEOREM. Let I be a nonzero ideal of R and A be the additive subgroup (of
RC) generated by {p(a,, . ..,a,):ay,...,a,EI}. Then either p(x,, ..., x,)is
central valued or A contains a proper Lie ideal of R, except in the only one case
where R is the ring of all 2 X 2 matrices over GF(2), the integers mod 2.

In [9], some special cases of our main theorem are proved. But there p is
assumed to be strongly noncentral. Actually, the most intricate part of our
proof is exactly devoted to removing this assumption. Also in [9], R is assumed
to be a k-algebra, where k is a commutative ring with 1, and it is the k-
submodule generated by all specialization of p, the so-called extended range of
D, that is shown to contain noncentral Lie ideals. In this context, our theorem
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gives the most general possible formulation. These remarks may justify the
length of this paper.

It is proved in [2] and [5] that in a prime ring R, any noncentral Lie ideal U
of R is proper except only when Ch R =2 and R is 4-dimensional over its
center. Conversely, for any nonzero ideal / of R, [/, I, the additive subgroup
generated by [x, y], x, y €1, can be seen easily to be a Lie ideal. As p(x,y) =
[x, y]is simply a special instance of polynomials in noncommuting variables
X, y, our theorem can be viewed as a generalization of this fact.

Our theorem is very useful in reducing /inear problems about polynomials to
those about Lie ideals. Before proceeding to the proof, we give an application
here. Let J, d be two nonzero derivations on a prime ring R. Posner [11] and
Herstein [6] proved that if dd(R)C Z, then ChR =2, d>=0and § = Ad for
some A € C except only when Ch R = 2 and R is 4-dimensional over its center.
Lee [10] and Ke [8] generalizes the above result by assuming only 6d(U) C Z,
where U is a noncentral Lie ideal. Our theorem gives immediately the
following further generalization.

COROLLARY. Letd,dand R be as explained above. Let I be a nonzero ideal
of R and p(x,, . .., x,) be a noncentral polynomial with coefficients over C. If
éd(p(ay,...,a,)EZ fora,,...,a,EI, then ChR =2, d*=0 and 6 = Ad for
some L €C.

The corollary above is also a generalization of the following result due to
Felzenszwalb [4): Let d be a nonzero derivation on a prime ring R. Let n = 1 be
a fixed integer. Suppose d(x") = 0 for all x ER. Then R is commutative.

Now we come to the proof of our main theorem, which is divided into three
cases. We begin with the easiest.

1. The case of non-p.i. rings

Suppose R is not a p.i. ring. By linearizing, we may assume p(x;, ..., x,)is
multilinear. Replacing I by a smaller one, we may assume p(a, . . ., a,) ER for
a;,...,a,€Iand hence 4 C R. Let d be an inner derivation of R. Observe
that d(I) C I. Using the multilinearity of p(x,, . . ., x,), we have

d(p(a,,...,a,))=pld@),a,...,a,)+ pla,d(ay),...,a,)
+ -+ pa,...,da)EA.

Hence [R, A] C A and A itself is a Lie ideal. 4 must be proper, for otherwise R
would be a p.i. ring by lemma 1 [2] and theorem 1.5 [5].
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2. The case of p.i. rings with finite center

Let R be a p.i. ring with Z = Z(R) finite. By theorem 2 (p. 57 [7])
R = R, = M(Z) = the ring of all s X s matrices over Z, where s> = dim,R. R
is simple and so I = R. If s = 1, then R is commutative and p(x;, ..., x,) is
trivially central valued. If s > 1, then R possesses a nontrivial idempotent.
Observe that 4 is invariant under all automorphisms of R. Our desired result
follows immediately from the theorems of [3].

3. The case of p.i. rings with infinite center

This is the stickiest part of the proof. Suppose R is a p.i. ring with Z(R)
infinite. If R is not a domain, then we can also argue as in the previous case.
But our proof given below works for both domains and nondomains.

Let dim,R = s? and K = the quotient field of Z(R). Note that K coincides
with the extended centroid C. Following the notations in [7], set K{X} =
K{x,,...}=the polynomial ring over K in noncommuting variables
X, X, . .. . Weremark that x, y, z, ¢, . . . will also be used to denote x,, x;, . . .
for convenience. Set K{X} = K{X}/I,, where I, is the T-ideal of identities of
M,(K). Note that K{X} is a domain (theorem 2, p. 90, [7]) and its ring of
central quotients, denoted by UD(K, s), is a division algebra of degree s. Let
Z{X} denote the subring of K{X} consisting of polynomials with coefficients
in Z = Z(R) and Z { X} be the homomorphic image of Z{ X } under the natural
homomorphism from K{X} onto K{X} (sending x; to X;).

We recall some more definitions. An element fEK{X} is said to be
homogeneous in x; if each term (monomial) of fhas the same x-degree. If fis
homogeneous in each variable, then f'is said to be completely homogeneous.
We say fis of degree (k;, k, . . ., k,,) if the x-degree of fis k;fori=1,..., m
and is 0 for i > m. It is obvious that every f€ K{ X} can be written uniquely as
a sum of completely homogeneous polynomials of distinct degrees. We write
S=Zfuks... k> Where fi 4, . i, denotes the completely homogeneous part
of fof degree (k,, ..., k,). Finally we define

Ay = the additive subgroup of K{ X} generated by
(St v ey S0), Sty -0 SREZ{X).

A= {fOy .. Xm)EK{X}: fRps . -+ » Xm) E Ao}

Observe that, for f(x,,...,Xn)EA;, and a,,...,a,€I, we have
fla,,...,a,)€EA.
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LEMMA 1. Assume A, contains an element f(x,, . .., X,,) such that
(1) fis not central and
(2) fislinear insome x;(i =1,...,m), say in x,.

Then our theorem holds.

ProoF. Choose fE€ 4, which satisfies, in addition to (1) and (2) above, also
the following

(3) fhas minimum number of completely homogeneous parts with respect to

(1) and (2).

We claim fis completely homogeneous. Suppose finvolves x,, . . ., X, only.
Since fis not central, one of its completely homogeneous part, say f; 1, ... k. 18
noncentral. It suffices to show f has no other completely homogeneous parts
than £, 4, . .- Suppose, on the contrary, that f;, ;, .., is another one distinct
from f, r, .. k., For a€EZ(R),

.....

flxpaxy, .. y=abfy (X )Fa . XY e
and, using the x,-linearity

S, xp, .. )= a2 f(x), Xy, .. .)

= ol X ) el ) e
(Dots above denote summation over completely homogeneous parts other
than f, ,, ., and f, , ,.) So we have
glxy,...)=fx, axy, ...)— flakxy, x5, . ..)
= (a2~ ) fy . T o

Obviously g€ 4, and g contains less completely homogeneous parts than f
since f;; ;,..., has been canceled. By (3) above, g is central and so is its
completely homogeneous part (o2 —a2)f, 4 . But f, . ., has been
assumed to be noncentral. We have o*: = o2 = 0. This holds for all « lying in
the infinite set Z(R). k, = [, follows. Using the same argument, we can show
ky=1,...,k,=1,. Thisis absurd!

By replacing our p by fabove, we may assume our p is linear in x; and is
completely homogeneous. Set Z, = the center of Z{X} and Z, = the center of
UD(K, s) Define

B={g(x,....)a"" :g(x,,...)EAyand aEZ, — {0}}.

Since pis linear in x, and is completely homogeneous, B is equal to the additive
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subgroup of UD(K, s) generated by p(d,, ..., d,),d,,...,d, €EUD(K,s).So B
is an invariant Z,-subspace of UD(K,s). By theorem 7 [l], B2
[UD(K, s), UD(K, 5)]. Thus there exists a nonzero central polynomial c(x, y)
in Z{ X} such that ¢(x, y)[x, y] EA,. Note that we have left out variables other
than x, yin ¢(x, y). Since p is linear in x;, 4, is a Z(R)-module. Using the fact
that Z(R) is infinite, we may assume c(x, y) is completely homogeneous. Let z
be a new variable. Linearizing x, we have

g=clx+z,Yx+z,y]—clx,y)x,y]—c(z,y)z, y]E€EA,.

Set / = the x-degree of ¢(x, y) and let 7 = the sum of terms in o whose z-degee
is /. Rewrite o as

o=(c(x+z,y)—clx,y)x,y] + (clx + z,¥) — c(z, )z, y];
‘we can see that 7 is of the form
T =c(z,y)x,y]1+c'(x, z,y)z,¥]

where ¢'(x, z, y) is another central element in Z{X}. Using the fact that 4, is a
Z(R)-module and Z(R) is infinite, we can see that there exists a € Z(R) — {0}
such that at € 4,. Since p is linear in x,, A4, is also closed under multiplication
by central elements of Z{X}. So ac(z, y)r €4,. Write

ac(z, y)t = ac(z, y)x, y]1 + ac'(x, z, y)e(z, y)z, YIEA,
and note
ac'(x, z,y)e(z, )z, y]1€ac'(x, z, y)A; C A,.

We have ac(z,y)’[x,y]EA,. Repeating this argument for y, we have
Be(z, w)¥[x, y]E€4, for some BEZ(R)— {0} and another new variable, w.
Now pick elements of I so that the evaluation of fc(z, w)* on these elements is
some nonzero y € Z. Then 4 2 y[I, I] as desired.

To produce fE 4, as described in Lemma 1, we need some sort of lineariza-
tion. Let us recall the difference operator Ay in K{X} (p. 16, [7]): Let
fxs, ..., Xm)EK{X}. Then for 1 =i = m, we define

A;ff(xb"->xm)=f(x1’---,xi—bxi +y7xi+l’~'°’xm)
_f(xla'--9xi,---’xm)—f(xla'--’Xi—l’yaxi+l,'--’xm)'

We also need the differential operator Dy which we define right here.
(1) Let m(...,X;,...)be a monomial in K{X}. A monomial g is called a
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variation of m at x; by y if g is obtained from m by substituting y for one
occurrence of x; in m. In case that m does not involve X;, we set the variation of
m at x; by y to be Q.

E.g. Let m(x;, x,) = x2x,x,. Then yx,x,x,, x;yX,X;, Xx2x,y are (all the) varia-
tions of m at x; by y.

(2) For a monomial m in K{X}, D;im is defined to be the sum of a// distinct
variations of m at x; by y.

E.g. For m in the example above, we have Djim = yxxx, + x,yx,x, +
xix,y.

(3) For fEK{X} in general, write f=Xm, where m,’s are monomials.
Define Djif to be ZD;m,.. The well-definedness is obvious.

The following lemma is what we need about these two operators.

LEMMA 2. Let f(xy, ..., Xn,)EK{X} involve only x,, . . ., X,,.
(1) Suppose d is an inner derivation of R. Then fora,,...,a,ER,

df(ala L) am) = E Ds(a,)f(ala DS am)-
i=1

(Here we abuse the notations in an obvious way.)

(2) Suppose the x-degree of each monomial of f is larger than 1. Then
D;if = the sum of terms in Ayif whose y-degree is 1.

(3) Writef=Zfu, . k., Wherefy, . i, isthe completely homogeneous part
of f of degree (k,, ..., ky). If Ajf is central for all i =1, ..., m, then each
completely homogeneous part fi, ., such that k,>1,..., k, > 1 must be
central.

.....

.....

Proor. (1)and (2): It is obvious by direct expansion when fis a monomial.
Since d, Dji, and A} are all linear, the result extends easily to arbitrary
JEK{X}.

(3) Suppose k, > 1, ..., k,, > 1. By (1) and (2) above, dfyx, . i@ - .-, ap)
is central for any inner derivation 4. This implies easily that f,,
central.

Let us choose f€ A, such that

(1) fis noncentral.

(2) fis of minimum height with respect to (1). (Height is defined in p. 15
[71.)

(3) f contains minimum number of distinct nonzero completely homo-
geneous parts with respect to (1) and (2).
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LEMMA 3. Supposef= f(x,, ..., Xn)EA, satisfies (1), (2), (3) above. Then
(1) there is only one completely homogeneous part of f that is noncentral and

(2) for this noncentral completely homogeneous part, say fy, ... 1., one of
ki, ..., k, mustbel.
ProoF. By (3)above, fmust be blended. We may assume k; = 1,...,k, =

1 for each completely homogeneous part f, .. . Since fis assumed to be
noncentral, one of its completely homogeneous parts, say f, . 1., IS honcen-
tral. Suppose f, ., is another completely homogeneous part distinct from
Sk ... k- Then for a € Z(R),

foxy, Xy, ) =abhfy (X X)

toahhfy Xy X)) e,
Sy, ohxy, o)y =adfhfy (X X)

+ahify X X)) e

Let g(x;, Xy, . . . )= flahx,, Xy, . .. ) — f{x;, @'xy, . . . ). Then g takes the form

g(xla sy xm) = (akll2 - akzll)ﬁk, k,,,)(xla veey xm) + .- 5

,,,,,

g contains less completely homogeneous parts than f. It is also obvious that
g2€E€A, and height g =< height f. Hence g must be central and so must its
completely homogeneous part (o*: — o®)f, ;.. Thus ot = o¥ and this
implies k,/l, = k,/l,. Repeating the same argument, we have k//, = k,/l,=
cee=k,/l,.

Since fis of minimum height among noncentral elements of 4,;, Ajf must be
one of i,..., i, must be 1. Hence one of k,, ..., k,, say k,, is 1. For any
S ..yotherthanfy .., wehavel, =k, ..., 1, = k,l by theresult of the
previous paragraph. If /, =1, then ,=k,, ..., [, = k,,. This contradicts the
distinctness of £, 1, ...« and fy, ., ..., Hence none of /,, ..., [, can be 1. By
(3) of Lemma 2 again f, __,, must be central. This finishes the proof.

,,,,,

..... k» With k; =1 be the only noncentral completely homogeneous
part of f. Write f, 4., =/fi for short. Then f= ¢, + f;, where ¢, is a central
polynomial. A little reflection will show this is the best form that linearization
process can give. To obtain our desired f, we need another technique, which is
contained in

LEMMA 4. A, does contain an element as described in Lemma 1.
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PrOOF. Let ¢, be a new variable distinct from x;, . . ., x,,. By theorem 1 on
p. 44 of [7], thereis h(t) = h(t}, t,, . . . )E Z{ X} such that t,h(t) = h(t)t, = c(2),
where c¢(t) is a nonzero central polynomial. We may assume the variables
t;, b, . . . involved in A(¢) are all distinct from x,, . . ., x,,. We may also assume
h(t) is completely homogeneous. Set g(¢, x) = flc(t)x,, . . ., c(t)x,, ). We intro-
duce the following notations for simplicity' tfor(fy, fy,...), Xfor (%, ..., Xm),
h for h(f)=h(f, 6, ...) and ¢ for c(f)=c(t, b, ...). Now working in
UD(K, s), we have

1g(t, R)hlc =1, f(CR,, CX, . . ., CXp )T
= flbexity s ... GCXuty ")
=f(t—|X,h—, ceny t_“xmﬁ)EAo.

Assume | + k, + - - - + k,, = [. Using the fact that ¢, is central, we have

Le(t, R)hie =co(cXy, ..., X)) + LR, - .., X )E A,
Hence

g(xX, 1) — L g(f, XIR/c = fi(CXy, . . ., CRp) — LAy, ..., X)) R
=Ry ey Xm) — Bfi(Ry . . o, X! TR E A,

Thus c(t)'fi(x) — t,.fi(x)c(t) "' h(t)E A, and is linear in x;. So it suffices to show
this element is not central.

Suppose on the contrary that ¢'f; — ¢, fic' ~'h is central. Working in K{ X}, we
have f, — {,fi{ ' = aE the center of Z{X}. Replacing ¢, by ¢, + 1, we have also
that f; — (f, + 1)f(f,+ 1) "'= B Ethe center of Z{X). Hence fif,—1,f;=
at, = B(t, + 1). If a # B, then {, would be central, absurd! So « = f# and then
B =0.So fif, = {,f,. This implies f, is central, absurd again. This completes our
proof.
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